hai
Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.Explore and learn more about Conference Series : World's leading Event Organizer
As per available reports about 15 Relevant Journals, 42 Conferences, 10 Workshops are presently dedicated exclusively to Controlled Release and about 19 open Access articles are being published on controlled release.
Controlled release is a term referring to the presentation or delivery of compounds in response to stimuli or time. This can be for purposes in several areas including agriculture, cosmetics and personal care, pharmaceuticals and food science. Most commonly it refers to time dependent release in oral dose formulations. Timed release has several distinct variants such as sustained release where prolonged release is intended, pulse release, delayed release (e.g. to target different regions of the GI tract) etc. A distinction of controlled release is that not only prolongs action but it attempts to maintain drug levels within the therapeutic window to avoid potentially hazardous peaks in drug concentration following ingestion or injection and to maximize therapeutic efficiency. Different aspects involve: Drug targeting, Nanotechnology in Drug Delivery Systems, Vaccine Drug Delivery, Advances in Biotherapeutics-Drug Discovery and Development, New Delivery methods for Peptide and Biologics
OMICS International Organizes 1000+ Global Events Every Year across USA, Europe & Asia with support from 1000 more scientific societies and Publishes 700+ Open access journals which contains over 100000 eminent personalities, reputed scientists as editorial board and organizing committee members. The conference series website will provide you list and details about the conference organize worldwide.
Scope and Importance:
The rapid development of controlled release systems arises from the ability to overcome the drawbacks of the currently employed therapeutic drugs, which exhibit poor biopharmaceutical and pharmacokinetic properties. Nanoparticle drug carriers provide alternative formulation strategies for those molecules thus enhancing the scope for commercialization. They are potential for prolonged drug release. The conference too offers growth to expand reserves of knowledge and explore newer realms.
Controlling the rate, extent and time of a drug’s delivery can optimize its performance in many ways, relative to “immediate release” delivery. Such optimized design requires a broad knowledge base of topics such as gastro intestinal tract physiology, polymer science, and the mechanisms by which drugs are released from the formulated units. Technologies to “reduce to practice” also need to be carefully considered. Such knowledge must be allied to the physicochemical properties of the drug, its pharmacokinetic behaviors, enzyme susceptibility and other factors that can affect absorption or timecourse in the biosystem. Traditionally, controlled release systems tended to be “second-generation products, building on accumulated clinical experience. However, better awareness of the molecular biology of drug action and the promise of biomarkers and personalized medicine may mean that optimizing performance by controlling release may become a first option in new product development. Such optimization may well help reduce the alarming attrition rates that are now prevalent in new drug development.
Controlled Release in Oral Drug Delivery provides chapters, dealing with all facets of the above subject matter, and its challenges. Authors have been drawn from academia, providers of excipients and from those designing controlled release systems in industrial R&D and manufacture. The contents provide a unique blend of cutting edge knowledge, data on materials and practical experiences. It is essential text for students, researchers and industrial engineering, formulation and manufacturing technologists as well as quality testing and control functions. The ways in which chemicals or drugs are administered have gained increasing attention in the past two decades. Normally, a chemical is administered in a high dose at a given time only to have to repeat that dose several hours or days later. This is not economical and sometimes results in damaging side effects. As a consequence, increasing attention has been focused on methods of giving drugs continually for prolonged time periods and in a controlled fashion. The primary method of accomplishing this controlled release has been through incorporating the chemicals within polymers. This technology now spans many fields and includes pharmaceutical, food and agricultural applications, pesticides, cosmetics, and household products.
In the pharmaceutical field, in addition to the importance of polymers, an understanding of the physiological barriers in the human body is also critical to developing appropriate controlled release systems. The skin, the gastrointestinal tract, the nose, and the eye are of particular importance. Finally, recent advances in genetic engineering have spawned numerous new polypeptide agents and DNA and siRNA. Approaches for delivering and stabilizing these molecules will be discussed.
Market Analysis:
The global revenue for advanced drug delivery systems is estimated to be $181.9 billion in 2013. In 2018, revenues are estimated to reach nearly $212.8 billion, demonstrating a compound annual growth rate (CAGR) of 3.2%.
International Symposium and Workshops
List of Best International Conferences:
Relevant Society and Associations:
Companies:
This page will be updated regularly.
This page was last updated on November 5, 2024