hai
Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.Explore and learn more about Conference Series : World's leading Event Organizer
As per available reports about 07 through its relevant journals, 08 Conferences, 09 workshops, are presently dedicated exclusively to Cell cycle and about 29 articles are being published on Cell cycle.
The Cell cycle or cell-division cycle is the series of events that take place in a cell leading to its division and duplication (replication) that produces two daughter cells. In prokaryotes which lack a cell nucleus, the cell cycle occurs via a process termed binary fission. In cells with a nucleus, as in eukaryotes, the cell cycle can be divided into three periods: interphase, the mitotic (M) phase, and cytokinesis. During interphase, the cell grows, accumulating nutrients needed for mitosis, preparing it for cell division and duplicating its DNA. During the mitotic phase, the cell splits itself into two distinct daughter cells. During the final stage, cytokinesis, the new cell is completely divided.
OMICS International Organizes 1000+ Global Events Every Year across USA, Europe & Asia with support from 1000 more scientific societies and Publishes 700+ Open access journals which contains over 100000 eminent personalities, reputed scientists as editorial board and organizing committee members. The conference series website will provide you list and details about the conference organize worldwide.
Scope and Importance :
The cell-division cycle is a vital process by which a single-celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. After cell division, each of the daughter cells begin the interphase of a new cycle. Although the various stages of interphase are not usually morphologically distinguishable, each phase of the cell cycle has a distinct set of specialized biochemical processes that prepare the cell for initiation of cell division.
. The cell cycle, or cell-division cycle, is the series of events that take place in a cell leading to its division and duplication (replication) that produces two daughter cells. In cells without a nucleus (prokaryotic), the cell cycle occurs via a process termed binary fission. In cells with a nucleus (eukaryotes), the cell cycle can be divided in three periods: interphase during which the cell grows, accumulating nutrients needed for mitosis preparing it for cell division and duplicating its DNA and the mitotic (M) phase, during which the cell splits itself into two distinct cells, often called "daughter cells" and the final phase, cytokinesis, where the new cell is completely divided. The cell-division cycle is a vital process by which a single-celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. After cell division, each of the daughter cells begin the interphase of a new cycle. Although the various stages of interphase are not usually morphologically distinguishable, each phase of the cell cycle has a distinct set of specialized biochemical processes that prepare the cell for initiation of cell division. Control of the cell cycle is necessary for a couple of reasons. First, if the cell cycle were not regulated, cells could constantly undergo cell division. While this may be beneficial to certain cells, on the whole constant reproduction without cause would be biologically wasteful. Second, internal regulation of the cell cycle is necessary to signal passage from one phase to the next at appropriate times. This regulation is not achieved through strict time constraints, but rather with feedback from the cell.Interphase: Interphase generally lasts at least 12 to 24 hours in mammalian tissue. During this period, the cell is constantly synthesizing RNA, producing protein and growing in size. By studying molecular events in cells, scientists have determined that interphase can be divided into 4 steps: Gap 0 (G0), Gap 1 (G1), S (synthesis) phase, Gap 2 (G2).Gap 0 (G0): There are times when a cell will leave the cycle and quit dividing. This may be a temporary resting period or more permanent. An example of the latter is a cell that has reached an end stage of development and will no longer divide (e.g. neuron).Gap 1 (G1): Cells increase in size in Gap 1, produce RNA and synthesize protein. An important cell cycle control mechanism activated during this period (G1 Checkpoint) ensures that everything is ready for DNA synthesis.S Phase: To produce two similar daughter cells, the complete DNA instructions in the cell must be duplicated. DNA replication occurs during this S (synthesis) phase.Gap 2 (G2): During the gap between DNA synthesis and mitosis, the cell will continue to grow and produce new proteins. At the end of this gap is another control checkpoint (G2 Checkpoint) to determine if the cell can now proceed to enter M (mitosis) and divide.Mitosis or M Phase: Cell growth and protein production stop at this stage in the cell cycle . All of the cell's energy is focused on the complex and orderly division into two similar daughter cells. Mitosis is much shorter than interphase, lasting perhaps only one to two hours. As in both G1 and G2, there is a Checkpoint in the middle of mitosis (Metaphase Checkpoint) that ensures the cell is ready to complete cell division. Actual stages of mitosis can be viewed at Animal Cell Mitosis
Market Analysis:
The global cell culture market was valued at an estimated $14,772 million in 2013. This market is expected to grow at a CAGR of 10.71% between 2013 and 2018, to reach $24,574 million in 2018.
International symposium and workshops:
Cell cycle: bridging scales in cell division Roscoff (Brittany), France,
Cell cycle, 4-7 September 2015 Budapest, Hungary
3rd International Conference and Exhibition on Clinical & Cellular Immunology, Baltimore, USA
The Dynamic Cell 2014, 4-7 September 2014Robinson College, Cambridge, UK
The molecular and cellular basis of regeneration and tissue repair, Sant Feliu de Guixols, Spain
EMBL Heidelberg, Germany 14 - 22 Sep 2015
4th Annual Cell Culture & Bioprocessing Congress 2015, 9-10 November, 2015, London, UK
Cell Culture World Congress 2016, February 23 - 24, Sofitel Munich Bayerpost, Munich
3rd International Conference and Exhibition on Clinical & Cellular Immunology, Baltimore, USA
3rd ASM Conference on Viral Manipulation of Nuclear Processes
List of Best International Conferences :
Relevant Society and Associations:
Companies :
This page will be updated regularly.
This page was last updated on November 22, 2024